Long-term HIV-1 infection induces an antiviral state in primary macrophages

Long-term HIV-1 infection induces an antiviral state in primary macrophages

Data de publicació online: 07/08/2016 Revista: Antiviral Research


HIV-1 infection is thought to impair type I interferon (IFN-I) production in macrophages, a cell type that is also relatively resistant to HIV-1 cytotoxic effects. Here, we show that monocyte differentiation into macrophages by M-CSF led to cell proliferation and susceptibility to HIV-1 infection that induced cell cycle arrest and increased cell death. Established HIV-1 infection of monocyte-derived macrophages induced the upregulation of the pattern recognition receptors MDA5 and Rig-I that serve as virus sensors; production of interferon-β, and transcription of interferon-stimulated genes including CXCL10. Infected macrophages showed increased expression of p21 and subsequent inactivation of cyclin-CDK2 activity leading to a hypo-phosphorylated active retinoblastoma protein (pRb) and deactivation of E2F1-dependent transcription and CDK1 downregulation. Additionally, HIV-1 infection limited deoxynucleotide pool by downregulation of the ribonucleotide reductase subunit R2 (RNR2) and reactivation of the HIV-1 restriction factor SAMHD1 together with increased cell death. In conclusion, HIV-1 induced an innate antiviral mechanism associated to IFN-I production, interferon stimulated gene activation, and p21-mediated G2/M arrest leading to elevated levels of cell death in monocyte derived macrophages. Upregulation of MDA5 and Rig-I may serve as targets for the development of antiviral strategies leading to the elimination of HIV-1 infected cells.

Autors: Pujantell M, Badia R, Ramirez C, Puig T, Clotet B, Ballana E, Esté JA, Riveira-Muñoz E.

Subscriu-te a la newsletter

Back to Top
Irsi Caixa

Impulsat per:

Fundació 'La Caixa' Generalitat de Catalunya - Departament de Salut


HR Excellence in Research

Membre de:


Amb la col·laboració de: